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Abstract
Hand gestures are an intuitive way for humans to interact with computers. They are
becoming increasingly popular in several application, such as smart houses, games, vehicle
infotainment systems, kitchens and surgery rooms. An effective human-computer interaction
system should aim for both good recognition accuracy and speed. This work proposes
a new approach for static hand gesture recognition. A benchmark database is used for
performance evaluation. It contains 2425 images with variations in scale, illumination and
rotation. Several common image descriptors, such as Fourier, Zernike moments, pseudo-
Zernike moments, Hu moments, complex moments and Gabor features are comprehensively
compared by accuracy and speed for the first time. Gesture recognition is made by a
multilayer perceptron with a flexible structure. In order to achieve improved accuracy and
minimize computational cost, both the feature vector and the neural network are tuned
by a multi-objective evolutionary algorithm based on NSGA-II. The proposed method is
compared against state-of-the-art methods. Experimental results showed good recognition
rate, using a descriptor with low computational cost and reduced size. A real-time gesture
recognition system based on the proposed descriptor is constructed and evaluated.

Key-words: Hand posture, MOEA, Neural networks.



Resumo
O uso de gestos de mão é uma maneira intuitiva para humanos interagirem com com-
putadores. Tal forma de comunicação tem aumentado sua popularidade em diversas
aplicações, como casas inteligentes, jogos, sistemas de infotainment em veículos, cozinhas
e salas de cirurgia. Um sistema eficiente de interação humano-computador deve visar
obter tanto boa acurácia quanto velocidade de reconhecimento. Este trabalho propõe uma
nova abordagem para reconhecimento de gestos estáticos de mão. Uma base de dados
de benchmark é utilizada para avaliação de desempenho. A base contém 2425 imagens
com variações em escala, iluminação e rotação. São implementados diversos descritores
de imagens comumente utilizados, como descritores de Fourier, momentos de Zernike e
pseudo-Zernike, momentos de Hu, momentos complexos e características de Gabor. Esses
descritores são comparados extensivamente, pela primeira vez, em termos de acurácia e
tempo computacional. O reconhecimento de gestos é feito por um perceptron multicamada
(MLP), contendo uma estrutura parametrizável. Para aumentar a acurácia e minimizar o
tempo de reconhecimento, a rede neural e o conjunto de características são otimizados
por um algoritmo genético multi-objetivo baseado em NSGA-II. O método proposto é
comparado com o estado da arte. Resultados experimentais mostram uma boa taxa de
reconhecimento, utilizando um descritor com baixo custo computacional e quantidade
reduzida de características. Um sistema em tempo real é construído com base no resultado
de otimização.



List of Figures

Figure 1 – Chart depicting the growing research efforts in hand gesture and posture
recognition (PISHARADY; SAERBECK, 2015). . . . . . . . . . . . . . 11

Figure 2 – Block diagram of a standard hand posture recognition system. . . . . . 14
Figure 3 – Multi-objective feature selection problem. . . . . . . . . . . . . . . . . 15
Figure 4 – Original and binary images. . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 5 – Computation time for Zernike and pseudo-Zernike moments up to order

10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 6 – A Gabor filter with θ = 0◦ and θ = 45◦. . . . . . . . . . . . . . . . . . . 21
Figure 7 – Real-time gesture recognition system. . . . . . . . . . . . . . . . . . . . 24
Figure 8 – The Massey hand posture database (BARCZAK et al., 2011). . . . . . 28
Figure 9 – An MLP with variable inputs and hidden layer size. . . . . . . . . . . . 30
Figure 10 – Binary chromosome structure associated to an ANN. . . . . . . . . . . 30
Figure 11 – A frequency count of number of features for a population of 200 chro-

mosomes initialized by flipping a coin for each bit (left) and by uniform
random initialization presented in Algorithm 2 (right). . . . . . . . . . 32

Figure 12 – A distribution of number of features and neurons in the hidden layer
encoded by a population of 200 chromosomes. . . . . . . . . . . . . . . 32

Figure 13 – A Pareto front achieved by NSGA-II after 1, 20 and 50 generations. . . 33
Figure 14 – Recognition rate and training time as a function of hidden layer size.

The recognition time for a single feature vector varies insignificantly
and is below 1 ms for any tested number of neurons in the hidden layer. 38

Figure 15 – Comparison of the NSGA-II output with full feature vectors. . . . . . . 39
Figure 16 – Several gestures recognized in real time. . . . . . . . . . . . . . . . . . 41
Figure 17 – An illustration of sensitivity to rotation. The gesture “Y” is only recog-

nized correctly in the middle image. . . . . . . . . . . . . . . . . . . . . 41



List of Tables

Table 1 – Comparison of performance for different feature descriptors. . . . . . . . 36
Table 2 – t-test between feature descriptors . . . . . . . . . . . . . . . . . . . . . . 38
Table 3 – Comparison with existing methods . . . . . . . . . . . . . . . . . . . . . 40



Contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Hand Posture Recognition . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Hu moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Complex moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Zernike and pseudo-Zernike moments . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Fourier descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Gabor features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Multiclass Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Real-Time Gesture Recognition . . . . . . . . . . . . . . . . . . . . . 23

3 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 EXPERIMENTAL EVALUATION . . . . . . . . . . . . . . . . . . . . 27
4.1 Hardware Setup and Validation Technique . . . . . . . . . . . . . . . 27
4.2 Benchmark Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Gabor features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.4 Feature vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 RESULTS AND ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . 36
5.1 Evaluation of feature descriptors . . . . . . . . . . . . . . . . . . . . . 36
5.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Comparison with Existing Methods . . . . . . . . . . . . . . . . . . . 39
5.4 Real-Time Gesture Recognition . . . . . . . . . . . . . . . . . . . . . 40

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



11

1 Introduction

Static hand gestures, also known in the literature as hand postures, can provide an
intuitive human-computer interaction (HCI), in addition to being a non-verbal form of
communication between humans. A hand gesture recognition system can be used for an
effective and natural human-machine interaction (WANG; WANG, 2008). It can also be
beneficial for the deaf or hearing impaired, who use mostly gestures for communication
(BIRK; MOESLUND; MADSEN, 1997). Other potential applications for this system
include:

• Virtual object manipulation.

• Interaction with multimedia and games.

• Smart houses.

• Infotainment systems in vehicles.

• Use in places with critical sanitary conditions, such as surgery rooms and kitchens.

The chart in Figure 1 shows the growth in interest in hand gesture recognition. Despite
the increasing effort there are still open challenges, some of which will be discussed further
and addressed in this work.

Figure 1 – Chart depicting the growing research efforts in hand gesture and posture
recognition (PISHARADY; SAERBECK, 2015).

Overall, a hand posture recognition system relies on acquisition, segmentation,
feature extraction and recognition of specific visual features characterizing the posture in
the image (RASINES; REMAZEILLES; BENGOA, 2014). Once the hand acquisition and
segmentation steps are completed, the problem consists in extracting a good feature set
and recognizing the hand posture with an effective classifier. Furthermore, an effective hand
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posture recognition method has to be both accurate and real time capable. Although a
variety of feature extraction and recognition methods focuses on improving the recognition
rate of static hand gestures, few of them, such as Rasines, Remazeilles e Bengoa (2014)
and Guo, Liu e Gong (2015), also consider the computational cost involved.

1.1 Objectives
The purpose of this work is to demonstrate a novel combination of features and

optimization techniques for fast and accurate hand posture recognition. The proposed
methodology has not been used before for hand posture recognition. A multi-objective
genetic algorithm (NSGA-II) is designed to improve accuracy, minimize the number
of features and simplify connections in an artificial neural network (ANN). Extensive
experimentation is conducted with a hand posture database (BARCZAK et al., 2011) and
the proposed method is compared with existing ones in terms of recognition accuracy,
computational cost and feature vector size. Finally, a real-time gesture recognition system
based on the proposed descriptor is implemented and evaluated.

1.2 Contributions
Commonly used image descriptors, namely Fourier, Zernike moments, pseudo-

Zernike moments, Hu moments, complex moments and Gabor features, are comprehensively
compared by accuracy and speed for the first time. For better performance the algorithms
are implemented in C++. A hand posture database (BARCZAK et al., 2011) with 2425
images and 36 classes is used for benchmarking and the results are statistically compared.
Thus the results presented here are a good stating point for further work with these
descriptors.

Furthermore, a multilayer perceptron is implemented for the recognition step. The
neural network is designed to allow feature selection and adjustment in the number of
hidden layers. This way it is possible to decrease the number of features and the overall
complexity of the classifier, as this makes overfitting of the test data less likely to occur
(SOYEL; TEKGUC; DEMIREL, 2011). Reduced complexity is also important for real-time
systems as it usually means decreased computational cost.

As previously stated, hand posture recognition is a multi-objective problem: the
system should be designed to maximize accuracy and minimize recognition time. This is
addressed in this work by wrapping the feature vector and the classifier in a multi-objective
genetic algorithm based on NSGA-II. The initialization step of this algorithm is adapted for
feature selection and the whole optimization system is implemented on a small computer
cluster.
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Finally, while this work’s main focus is feature extraction and classification, other
steps, such as image retrieval and preprocessing are also implemented and evaluated. A
real-time system is implemented based on the optimization results, as described further. A
paper has been submitted to a journal for review in March, 2017.
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2 Background

This section provides basic information about hand posture recognition and multi-
objective optimization. Related work on hand posture recognition is also reviewed.

2.1 Hand Posture Recognition
A hand posture recognition system is illustrated in Figure 2 and consists essentially

of the following steps: (a) image acquisition; (b) hand segmentation; (c) feature extraction;
(d) hand posture classification. Although hand segmentation is as much challenging as
feature extraction and classification, it is usually treated as a separate problem, with
proposed solutions varying from special gloves and 3D cameras to purely computational
(BADI; HUSSEIN; KAREEM, 2014). Since this work is focused on feature extraction
and recognition, the database is already segmented, requiring only a binarization step. In
this case, this step is straightforward and consists of assigning white color to all pixels
with values greater than zero. A more detailed explanation about image processing before
feature extraction is presented in Section 4, where a real time gesture recognition system
is described.

After extraction from a segmented frame, the image descriptors are used to compose
the feature vector. The descriptors have to be carefully selected in order to achieve good
recognition rate without causing a significant delay in the human-machine interaction.
In the proposed method, an evolutionary algorithm is used to iteratively select the best
combination of features so that the two following goals are met: optimal recognition
accuracy and minimum computational cost. The resulting feature vector has a reduced
complexity and therefore is less likely to cause overfitting.

Similarly to the feature extraction step, gesture classification has to be both fast
and accurate. A multilayer perceptron (MLP) network is used to recognize the hand

Image acquisition
from camera

Segmentation

Feature
extractionClassification

Frame

Hand mask

Feature
vector

Figure 2 – Block diagram of a standard hand posture recognition system.
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Figure 3 – Multi-objective feature selection problem.

posture, having the feature vector as input. An MLP is a standard method for nonlinear
classification and can approximate any continuous function to an arbitrary accuracy
(LEUNG et al., 2003). However, the network’s performance within a given training period
is dependent on its structure. A small network may have limited processing capability,
while a large one may be too slow and have redundant connections. Thus, the same
evolutionary algorithm is also used to select the optimal layout for the neural network.

2.2 Multi-Objective Optimization
Multi-objective problems occur when an optimal decision is a trade-off between two

or more concurrent objectives. Hand posture recognition is inherently a multi-objective
problem, where any given solution can be evaluated by two criteria: the complexity of
selected features and the corresponding recognition rate. It is desirable to minimize the
complexity of the feature vector and to maximize accuracy.

In the feature selection problem addressed in this work, one solution A is said to
dominate another solution B if the following criteria are met:

• A has lower feature complexity than B and/or yields better accuracy.

• A is not worse than B, neither in terms of complexity nor of accuracy.

As an example, let us consider three different solutions in Figure 3: S1, S2 and S3. S1

is considered a dominated solution by both S2 and S3, while neither S2 nor S3 can be
considered better or worse than another without the introduction of a new criteria. The set
of all nondominated solutions, like S2 and S3, is called a Pareto front. A multi-objective
optimization is designed to search for an optimal Pareto front for a given problem.
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Figure 4 – Original and binary images.

In this work a Multi-Objective Genetic Algorithm (MOGA) is used to search for
Pareto-optimal solutions. A Pareto front is a useful tool to evaluate a trade-off between
speed and accuracy and support the decision for choosing a final model. Since the Pareto
front contains multiple solutions, one of them is manually selected to be used for a real-time
recognition system.

2.3 Feature Extraction
All features are extracted from binary and grayscale images containing only the

hand palm, as shown in Figure 4.

The following feature descriptors are implemented and evaluated in this work:
Hu moments, complex moments, Zernike moments, pseudo-Zernike moments, Fourier
descriptors and Gabor features. Combinations of these features are also considered. A
detailed description of the implementation of evaluated feature descriptors is given below.

2.3.1 Hu moments

The Hu set of moment invariants (HU, 1962) is one of the oldest and best established
image descriptors. They remain roughly constant under scale, rotation and translation.
The seven moments used in this work are extracted from a binary image and are defined
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as follows:

I1 = η20 + η02

I2 = (η20 − η02)2 + 4η2
11

I3 = (η30 − 3η12)2 + (3η21 − η03)2

I4 = (η30 + η12)2 + (η21 + η03)2

I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]

I6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2]

+ 4η11(η30 + η12)(η21 + η03)

I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

− (η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2] (2.1)

where each ηij is a scale invariant moment, as defined by (HU, 1962).

2.3.2 Complex moments

Introduced by Abu-Mostafa e Psaltis (1985), the complex moments are a simple
and computationally inexpensive form of moment invariants. As defined by Hasan e
Abdul-Kareem (2014), a complex moment of order m over an image intensity function
f(x, y) is

Cm =
∫ ∫

(x+ iy)mf(x, y) dx dy (2.2)

where i is an imaginary unit and x, y are image coordinates. Each complex moment has
two parts: real and imaginary. Since the neural network is designed for real values, we take
the modulus of a complex moment, |Cm|, as input to the neural network. As in the work
of Hasan e Abdul-Kareem (2014), the feature vector is obtained from the first 10 complex
moments.

2.3.3 Zernike and pseudo-Zernike moments

The Zernike polynomials were first proposed in 1934 by Frits Zernike. The corre-
sponding moments are known to be somewhat invariant to rotation, and can be modified
to also be stable under scale and translation (TEH; CHIN, 1988). The pseudo-Zernike
formulation (PZMs) proposed by Bhatia e Wolf (1954) has been shown to have better
feature representation and to be more robust to image noise than conventional Zernike
moments (TEH; CHIN, 1988).
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The Zernike moments (ZM) implementation is based on Hse e Newton (2004).
Complex ZM of a 2D image of order n and repetition m, over an intensity image f(x, y), is

Zn,m = n+ 1
π

∑
x

∑
y

f(x, y)Vnm(x, y)∗

n− |m| even, |m| ≤ n (2.3)

where x2 + y2 ≤ 1, so the original image coordinates are scaled for a unit disk x2 + y2 = 1,
and ∗ denotes the complex conjugate. The Zernike polynomial Vnm(x, y) is defined as

Vnm(x, y) = Vnm(r, θ) = Rnm(r)ejmθ

Rnm(r) =
n−|m|

2∑
s=0

(−1)s (n− s)!
s!
(
n+|m|

2 − s
)
!
(
n−|m|

2 − s
)
!
rn−2s (2.4)

where j is the imaginary unit and 0 ≤ r ≤ 1. The normalized image coordinates (x, y)
transformation to the domain of the unit circle (r, θ) is given by

r =
√
x2 + y2, θ = tan−1

(
y

x

)
(2.5)

Since Zn,−m = Zn,m and therefore |Zn,−m| = |Zn,m|, only |Zn,m| is used for the
feature vector. Also, |Z0,0| and |Z1,1| are the same for all normalized images and are not
used.

PZMs are calculated the same way as Zernike moments, based on a set of orthogonal
polynomials, defined over the polar space inside a unit circle. The difference is in the
definition of the radial polynomial Rnm(r):

Rnm(r) =
n−|m|∑
s=0

(−1)s (2n+ 1− s)!
s!(n+ |m| − s)!(n+ |m|+ 1− s)!r

n−s (2.6)

where m can now assume positive and negative values, subject only to the restriction |m| ≤
n. This implies that a set of pseudo-Zernike moments of order n is of size (n+1)2, whereas a
set of Zernike moments of the same order contains only (n+1)(n+2)/2 polynomials, due to
the additional constraint of n−|m| being even (CHONG; RAVEENDRAN; MUKUNDAN,
2003).

A disadvantage of pseudo-Zernike moments is in the computational cost involved
in the calculation of radial polynomials. A faster, p-recursive method for calculation of
Rnm(r), proposed by Chong, Raveendran e Mukundan (2003), is used in this work.

Standard PZMs, applied on an N ×N image, have a computational complexity
of O(N2n3) and the p-recursive method used in this work has a complexity of O(N2n2)
(CHONG; RAVEENDRAN; MUKUNDAN, 2003). In order to further increase computa-
tional efficiency, PZMs are calculated with fixed repetition (m = 0). Therefore, in this
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Figure 5 – Computation time for Zernike and pseudo-Zernike moments up to order 10.

implementation the complex term ejmθ is constant and equal to one. Figure 5 shows the
average CPU time for calculation of Zernike and pseudo-Zernike moments up to order 10,
from a set of 2425 grayscale images with 64×64 pixels. Zernike moments are shown to be
significantly faster than pseudo-Zernike, thus being more widely used.

2.3.4 Fourier descriptors

These features are based on the boundary (contour) coordinates, x(t) and y(t),
extracted from a segmented shape. Two different representations for the contour function
are used: complex coordinates and centroid distance function. The following implementation
is based on Zhang e Lu (2001).

In the first representation each coordinate of the contour is converted to a complex
function

z(t) = [x(t)− xc] + i[y(t)− yc] (2.7)

where (xc, yc) are the centroid coordinates of the contour. This shift is used in order to
make z(t) invariant to translation. Fourier transform is then applied to the magnitude of
z(t).

The second method is based on the centroid distance function, defined below. As
with z(t), the centroid distance function is also invariant to translation.

r(t) =
√

[x(t)− xc]2 + [y(t)− yc]2 (2.8)

A discrete Fourier transform (DFT) is applied to the contour functions described
above. This transformation is defined as

un = 1
N

N−1∑
t=0

s(t)
(

cos
(2πnt

N

)
− j sin

(2πnt
N

))
(2.9)
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where N is the number of contour points and s(t) is the contour function, namely r(t) or
z(t), as defined in Equations 2.7 and 2.8. Usually un is called the Fourier descriptor of the
shape.

When s(t) is a complex function z(t), the first component u0, also called a dc
component, is not used, since it is dependent only on the position of the shape. The feature
vector f is then composed of N − 2 descriptors (ZHANG; LU, 2001).

f
def=

[
|u2|
|u1|

,
|u3|
|u1|

, ...,
|uN−1|
|u1|

]
(2.10)

For a Fourier descriptor based on the centroid distance r(t), Equation 2.8 uses only
real numbers, so that the Fourier transform yields N/2 different values. Therefore, the
feature vector size is limited to N/2, as defined below (ZHANG; LU, 2001).

f
def=

[
|u1|
|u0|

,
|u2|
|u0|

, ...,
|uN/2|
|u0|

]
(2.11)

2.3.5 Gabor features

The response of this filter is considered to be a representation of simple visual cells
in mammals. It is widely used to recognize texture features by convolving an image with
the filter kernel (JAIN; FARROKHNIA, 1991). A two-dimensional Gabor filter is given by

G(x, y) = exp
(
−1

2

[
x2
θ

σ2
x

+ y2
θ

σ2
y

])
cos

(2πxθ
λ

+ ψ
)

xθ = x cos(θ) + y sin(θ)

yθ = −x sin(θ) + y cos(θ)

σx = σ, σy = σ

γ
(2.12)

with parameters explained below:

• standard deviation of the gaussian envelope (σ);

• orientation of the normal to the parallel stripes of a Gabor function (θ);

• wavelength of the sinusoidal factor (λ);

• spatial aspect ratio (γ);

• phase offset (ψ).

This filter performs a low pass filtering along the orientation of θ and a band pass filtering
orthogonal to its orientation θ. Therefore, by choosing the parameters above, it is possible
to enhance visual properties of an image, such as spatial frequency and orientation, as
illustrated in Figure 6.
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Figure 6 – A Gabor filter with θ = 0◦ and θ = 45◦.

A feature vector is constructed as follows: first a Gabor filter is applied to a
grayscale image containing only the hand palm; the resulting image is then rescaled to
8×8 pixels and the feature vector is composed of the corresponding array of 64 integers.
The resulting 64 integers are the feature vectors of the Gabor filter.

Remark: the descriptors defined previously can be used on other arbitrary forms,
thus increasing the range of potential applications for the proposed scheme.

2.4 Multiclass Classification
Once features are extracted from the image, a classifier is used to evaluate the

hand posture. The classifier receives a numerical string called a feature vector and outputs
the class corresponding to that input. In this case, a class represents one of the possible
hand postures. Several classifiers can be considered for this task, such as:

• k-nearest neighbors (k-NN) – a popular algorithm to decide the class of a sample
based on its feature vector’s distance to other training samples. The k least distant
samples are said to be the neighbors, and a majority vote determines the class label
of the sample.

• Decision trees – a tree structure in which leaves correspond to classes in the problem
and nonterminal nodes are used to make decisions of which path to take. These
decisions are based on the attribute values of a problem sample. When dealing with
continuous numerical data, decision trees are known as regression trees.

• Random Forest – an ensemble of multiple decision trees, each constructed by resam-
pling the sample data with replacement, a technique also known as bootstrapping
(LIAW; WIENER et al., 2002). Feature bagging is also be performed by using a
random subset of the feature set. Classification is made by a majority vote, which
aids in reducing overfitting of the training set. The number of trees as well as the
methods to aggregate the results can be adjusted for a specific task.
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• Neural networks – this class of algorithms uses biological neural networks as inspi-
ration. Multilayer perceptrons (MLP) are a common example of neural network.
Training an MLP is performed with a learning algorithm called backpropagation,
whose objective is to minimize the difference between the network’s output compared
to the expected output. Rumelhart et al. (1988) first described neural networks using
backpropagation for training. MLPs will be more detailed in Subsection 4.3.2.

• Multi-class Support Vector Machines (SVM) – a learning algorithm originally meant
for binary classification that separates two classes with a plane (BOSER; GUYON;
VAPNIK, 1992). This method aims to obtain a maximum decision boundary, that
is, the margin between training samples of different classes is the largest possible.
To apply this algorithm to a multiclass problem, it is possible to perform pairwise
classification or, alternatively, one label can be selected as the first class and all the
remaining label can be combined as a single class, turning a multiclass classification
problem into a binary classification problem.

2.5 Multi-Objective Optimization
As seen in previous sections, both feature descriptors and classifiers usually have

several parameters that need to be adjusted for a specific task. It is common to employ
optimization techniques to find a good set of hyperparameter for a classifier and feature
extractor.

Since hand posture recognition has at least two competing goals, namely speed
and accuracy, a multi-objective search is preferable. If another or more criteria for the
system are defined, such as robustness to noise, a many-objective optimization technique
may be used.

Regardless of the specific algorithm for optimization, this task will consist in the
following steps.

• Define objective functions – the optimization goals are made into measurable func-
tions.

• Define encoding method for the solution – each possible solution to the problem is
going to be represented in a certain code.

• Separate the dataset into test and train subsets – in order to avoid overfitting, the
optimization algorithm cannot interact with train data. It is usual to separate the
training data further using k-folds, this way the optimizer is evaluated with an
average performance for the k folds.
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• Run optimization – the optimizer performs search in the space defined by hyperpa-
rameters, looking to approximate the Pareto front of the problem.

• Test solutions – the Pareto optimal solutions returned by the optimizer are evaluated
on the Test subset, previously ‘unseen’ by the optimizer.

When a single solution has to be selected from the Pareto set of solutions, a decision
can be made according to an experts subjective preferences or by an algorithm. For
example, a decision maker can choose a solution that maximizes only the accuracy, because
speed is acceptable for all the Pareto optimal solutions. A decision maker can also rank
the various optimization by preference, thus converting a multi-objective problem into a
single-objective. On other hand, an election method, such as Borda count, can be applied
to algorithmically select a single solution.

2.6 Real-Time Gesture Recognition
A real-time static gesture recognition system is implemented. As described in the

flowchart in Figure 7a, the system consists of the following sequence of steps:

• Load database – a list of features is extracted from the dataset.

• Train classifier – the classifier is created based on the selected chromosome and is
trained on the extracted features.

• Initialize video capture – the OpenCV library is used to initialize video capture from
a webcam. Real-time recognition starts here.

• Grab frame – a single frame from the webcam is obtained and converted to grayscale.

• Remove background – the background and the wrist are removed by simple threshold.

• Crop hand image – only the hand is left for further processing.

• Convert to binary – the hand image is converted to black and white. The original
grayscale image is also preserved.

• Resize to 64×64 pixels – both binary and grayscale images are resized to 64×64
pixels.

• Extract features – features are extracted from grayscale and the binary image.

• Classify gesture – the feature vector is presented to the previously trained classifier
and the recognized gesture is printed on-screen. This process is repeated for each
frame.
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An illustration of steps 4 to 10 of this flowchart is found in Figure 7b, where the gesture
“3” is being processed and recognized.

1. Load database

2. Train classifier

3. Initialize video capture

4. Grab frame

5. Remove background

6. Crop hand image

7. Convert to binary

8. Resize to 64×64 pixels

9. Extract features

10. Classify gesture

(a) Flowchart of the system.
(b) The main steps involved in gesture

preprocessing.

Figure 7 – Real-time gesture recognition system.
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3 Related Works

Numerous methods have been recently developed to perform a successful hand
posture classification. Chaudhary et al. (2013) compare different applications of hand
gesture recognition using computer vision. The main focus of this survey are applications
of Artificial Neural Networks, Fuzzy Logic and Genetic Algorithms. While evolutionary
algorithms have been successfully applied to hand posture recognition, they have not been
used for feature selection and gesture classifier optimization. Several hand gesture acquisi-
tion and recognition techniques are surveyed by Rautaray e Agrawal (2015). Robustness
and real time capability are identified as important directions for improvement. These are
also considered as main objectives of this work.

Hasan e Abdul-Kareem (2014) and Badi, Hussein e Kareem (2014) present a
hand gesture recognition system. A total of 6 different gestures are classified with an
86.38% recognition rate, using a multilayer perceptron and complex moments. In this work,
complex moments are compared against other common image descriptors with respect to
accuracy and speed.

Aowal et al. (2014) have extensively tested discriminative Zernike moments (DZMs)
and compared them with standard Zernike moments, principal component analysis (PCA)
and Fourier descriptors (FDs). Ng e Ranganath (2002) develop a real-time system that
uses Fourier descriptors to represent hand blobs. An RBF network is used for hand
pose classification. Hu moments are compared with Zernike moments for general object
recognition (SABHARA; LEE; LIM, 2013) as well as for static hand gestures (OTINIANO-
RODRÍGUEZ; CÁMARA-CHÁVEZ; MENOTTI, 2012). In general, Zernike moments
have been found to be more accurate than Hu moments (OTINIANO-RODRÍGUEZ;
CÁMARA-CHÁVEZ; MENOTTI, 2012; SABHARA; LEE; LIM, 2013). Guo, Liu e Gong
(2015) propose an improved version of Zernike moments, measuring accuracy as well as
computational cost on a common static hand gesture database. The same databse is
used in this work. Avraam (2014) proposes a combination of graph-based characteristics
and appearance-based descriptors such as detected edges for modeling static gestures.
This method is tested on 10 numerical gestures from the Massey database (BARCZAK
et al., 2011). An average recognition rate of 83% with a standard deviation of 10% is
achieved. Local Binary Patterns (LBP), Speeded Up Robust Features (SURF), and Super
Pixels (SP) are compared by Kumar e Manjunatha (2017) on a proprietary dataset. SURF
features are found to yield better recognition rate, although the feature extraction time is
not considered. A sequential forward feature selection technique (SFS) is implemented by
Rasines, Remazeilles e Bengoa (2014) to select the most promising feature set among a
large variety of features, such as Gabor features, histogram of oriented gradient (HOG),
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Shannon entropy, Hu moments and others. The results are compared to those of Avraam
(2014), improving the average recognition rate on 10 gestures of the same database to 98%
with a standard deviation of 7%. The Massey database is also used in this work, with
results presented for the entire set of gestures, including 26 letters and 10 digits.

Although the feature set is very important for any classification task, the compu-
tational cost involved in this task is just as critical for real-time systems. For example,
despite being successfully used in diverse image recognition problems, Zernike moments
have the disadvantage of a higher CPU time compared to other common image descriptors.
In this work a significantly faster descriptor, based on Gabor filter, is implemented.

It is also necessary to consider how a neural network’s topology influences recogni-
tion accuracy and speed. A larger neural network may be better at recognizing a certain
pattern, but it will have greater training and classification costs. Genetic algorithms (GAs)
have been successfully used to improve performance in neural networks. Leung et al. (2003)
propose a neural network with switches in its links, using a genetic algorithm to tune its
structure and parameters. The number of hidden nodes is chosen manually, starting from
a small number and increasing it until a good recognition rate is reached. The result of
genetic tuning is a smaller, partially connected network, reducing computation, hardware
and memory costs. A similar approach is developed by Tsai, Chou e Liu (2006), using a
hybrid Taguchi-genetic algorithm (HTGA) and improving the GA’s capability to find the
global optimum. The genetic algorithm presented in this work simultaneously optimizes
the number of hidden neurons and the configuration of inputs in the neural network.

Considering the importance of choosing the best feature set to represent hand
postures and the computational cost of the best classifier to perform this task in real time,
this work compares several commonly used features, namely Zernike and pseudo-Zernike
moments, Fourier descriptors, complex moments, Hu features and Gabor features. These
image descriptors are compared based on recognition accuracy and computational cost.
Given that feature selection is a multi-objective problem, this work uses a well known
multi-objective evolutionary algorithm (NSGA-II) in order to select the best combination
of features and optimize the performance of the neural network.

Although artificial neural networks and genetic algorithms have been used separately
in this problem, the presented work is unique as it combines both. Also, as far as the
authors know, the feature descriptors tested in this work are compared for the first time
with respect to accuracy and recognition speed, providing a good starting point for future
works.
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4 Experimental Evaluation

4.1 Hardware Setup and Validation Technique
The method above is implemented and tested on several computers with i5 pro-

cessors and 4 GB RAM. The optimization is performed on a cluster formed by 28 such
computers. The MPJ library is used for message parsing (CARPENTER et al., 2000). For
better performance, all algorithms are implemented in C++ with the OpenCV library
(BRADSKI; KAEHLER; PISAREVSKY, 2005).

There are several strategies for experimental design involving multi-objective feature
selection and presentation of the results. In this work we follow the strategy used by
Xue, Zhang e Browne (2013), Hamdani et al. (2007) and Ishibuchi, Nojima e Doi (2006).
In order to increase statistical robustness, the results are averaged across a total of 50
experiments. The dataset is always divided randomly in training (80%) and testing (20%).

4.2 Benchmark Dataset
The Massey University Gesture Dataset (BARCZAK et al., 2011) is a well known

American Sign Language (ASL) database. It was published in 2011 and contains 2425
color images of 36 classes (26 letters and 10 numeric gestures). With the exception of
Guo, Liu e Gong (2015) and Kumar, Nandi e Kala (2014), other related works provide
results for only a part of this dataset (AOWAL et al., 2014; AVRAAM, 2014; RASINES;
REMAZEILLES; BENGOA, 2014). Although experiments are carried with parts of the
Massey dataset as well, the results are presented for the entire database.
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(a) Samples from the database.

(b) Three similar letters: “a”, “s” and
“t”, showing variations in scale,
tone, illumination and slight rota-
tion within the same class.

Figure 8 – The Massey hand posture database (BARCZAK et al., 2011).

Figure 8a shows samples of different classes. Note that some gestures are rather
difficult to distinguish. For example “a” and “e”, “d” and “1”, “m” and “n” or “i” and
“j”. Furthermore, the database contains variations in scale, illumination and rotation, as
illustrated in Figure 8b with three similar gestures: “a”, “s” and “t”. In order to minimize
the influence of scale and increase computational speed, the images are normalized to
64×64 pixels prior to the feature extraction step.

4.3 Implementation
This section describes details in implementation of methods found in Section 2.

4.3.1 Gabor features

Since the assignment of values for Gabor parameters is application dependent,
experimental adjustments are made considering the database used in this work. Gabor
features with different parameters are extracted from subsets of the Massey database. A
Bayesian classifier is used for comparison, due to increased training and testing speed.
Only one parameter is varied at a time, while the rest is kept constant. The following
ranges of values are considered:

• w: set to 64 from {16, 32, 64, 72, 128}.

• σ: set to 0.02 or 0.2 from 0.01–1.
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• θ: set to 0◦ from {0, 45, 90, 135, 180}.

• λ: set to 1 from 0.5–2.

• γ: set to 0.02 from 0.01–0.04.

• ψ: set to 0 from 0–1.

Only standard deviation σ is found to influence the recognition rate, with the best
values between 0.02 and 0.2, depending on the subset under consideration.

4.3.2 Neural network

The artificial neural network used is this work is called a multilayer perceptron
(MLP). It is constructed by multiple layers of fully connected neurons. An artificial neuron
is a simple unit of computation, having multiple inputs i1, i2, ..., in and a single output o.
Each input has an associated weight wn. An output can be expressed in terms of inputs
as o = f(∑ inwn). The function f is called an activation function. The sigmoid function
f(x) = 1/(1 + e−x) is commonly used as activation and is also used in this work.

A multilayer perceptron is usually trained by a supervised algorithm called back-
propagation. Assuming there is a dataset with input vectors and desired outputs, the
error of the network can be easily computed by subtracting the obtained output from the
desired one. Backpropagation then calculates the gradient of the error function in terms of
the weights of the network. The weights are then adjusted iteratively in order to minimize
this error.

A configurable three-layer perceptron network is used to classify the feature vector.
A network with l inputs, n neurons in the hidden layer and m outputs is shown in Figure
9. This network has two parameters that can be optimized for a specific problem:

• an array of l switches, connecting the feature vector fk with the input layer ik. The
arrangement of the switches defines the number of active neurons in the input layer,
i.e., the combination of features actually used for training and classification.

• the number of neurons in the hidden layer (n). This parameter is used to configure
the number of connections within the network.

Since each output neuron corresponds to one class, the size of the output layer is
determined by the number of classes (m).

The following parameters of the artificial neural network are experimentally ad-
justed:

• maximum number of iterations: set to 300, from a range between 100 and 400.
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Figure 9 – An MLP with variable inputs and hidden layer size.

• admissible error: set to 10−5, from a range between 10−6 and 10−4.

• gradient decent step size: set to 0.002, from a rage between 0.001 and 0.1.

• back propagation momentum value: set to 0.01, from a range between 0.05 and 0.1.

4.3.3 Optimization algorithm

A multi-objective evolutionary algorithm known as NSGA-II (Nondominated Sort-
ing Genetic Algorithm) is adapted for this application, which aims to achieve an increased
gesture recognition accuracy while reducing the number of features used to that end.
NSGA-II is a popular algorithm introduced by Deb et al. (2002). It has recently been used
for a variety of optimization problems but has been proposed for the first time for hand
posture recognition in this work.

As in a standard binary GA, there is a population of solutions and each solution is
encoded by a chromosome. As illustrated in Figure 10, each chromosome determines the
number n of neurons in the hidden layer (9 bits) and the number of available features (l
bits), which correspond to the array of switches in Figure 9.

0 1 · · · 8 9 · · · l + 8

hidden layer size features

Figure 10 – Binary chromosome structure associated to an ANN.

The main steps of NSGA-II are described in Algorithm 1. A detailed explanation
about nondomination and crowding distance selection criteria can be found in Deb et al.
(2002).

In order to avoid bias during optimization, the feature database is divided in
Training (80%) and Testing (20%) subsets, as described in Algorithm 1. During the
optimization loop, each chromosome represents one possible solution. The accuracy of
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this solution is evaluated by 5-fold cross-validation on the Training set. Note that cross-
validation is performed in the inner loop of the optimization algorithm to evaluate the
performance of a single chromosome. After the optimization loop, the final Pareto front is
tested on the Testing subset. This is called a wrapper approach to feature selection and is
discussed in more details by Kohavi e John (1997).

Algorithm 1 Multi-objective optimization method based on NSGA-II.
1: Extract features from a segmented dataset
2: Randomly divide dataset into Training and Testing subsets
3: Initialize genetic population P0 of size N
4: t = 0
5: while t < Maximum iterations do
6: Population Qt of size N is obtained from Pt through crossover and mutation
7: Rt = Pt ∪Qt

8: for each chromosome in Rt do
9: Generate MLP with encoded inputs and hidden layer size

10: Evaluate on Training subset, using cross validation
11: end for
12: New population Pt+1 of size N is selected from Rt based on nondominance and

crowding distance
13: t = t+ 1
14: end while
15: Evaluate the final Pareto front of Pt on Testing subset
16: Return the solutions in the Pareto front, along with training and test classification

accuracies

In NSGA-II the representation of each feature is the same as used in other binary
feature selections, where l features are encoded in a binary string. A bit has value “1” to
indicate that the feature is selected, and “0” otherwise.

The most common way to initialize a binary chromosome is by simply flipping
a coin for each bit (CARR, 2014). In the case of feature selection each bit represents a
specific feature, and so by flipping a coin every feature will have a 50% chance of being
present in a chromosome. This initialization technique has an undesirable result of creating
a population of chromosomes with, on average, half of the available features. In other
words, solutions with very few features, like “000010000”, or with most of the available
features, like “111101111”, will not be present in the initial population, thus restricting
the searching capability of the algorithm. In order to create a population with a uniform
distribution with respect to the number of selected features, we perform a uniform random
initialization, described in Algorithm 2. A comparison of both initialization methods can
be seen in Figure 11 and 12. Each method of initialization is applied to a population of
200 chromosomes, encoding 169 features.

As commonly found in the literature for similar problems involving evolutionary
algorithms, a bit-flip mutation is used with a rate of 1/n, where n is the number of



Chapter 4. Experimental Evaluation 32

Figure 11 – A frequency count of number of features for a population of 200 chromo-
somes initialized by flipping a coin for each bit (left) and by uniform random
initialization presented in Algorithm 2 (right).

Figure 12 – A distribution of number of features and neurons in the hidden layer encoded
by a population of 200 chromosomes.
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Algorithm 2 Uniform random initialization of a population of binary chromosomes.
1: Let n be the number of bits in a chromosome
2: Let m be the minimum number of features per chromosome
3: for each chromosome Ci do
4: Ci = binary string of n “0” /* this creates a clean cromosome with no selected

features */
5: r = max(m, i)
6: Create a list with r random numbers between 1 and n
7: for each number in the list do
8: Set the corresponding bit of Ci to “1” /* as a result, only r features are used */
9: end for

10: end for
11: Return population

Figure 13 – A Pareto front achieved by NSGA-II after 1, 20 and 50 generations.

bits in the chromosome and the crossover probability is set to 90%. Population size is
experimentally set to 50 (from 25, 50 and 100) and the maximum number of iterations
to 20 (from 1 to 50). As can be seen in Figure 13, no significant advantage is found in
running the optimization further than 20 generations, as the Pareto front does not visibly
improve.

4.3.4 Feature vectors

The feature extraction methods defined in Section 2 are implemented as stated
below. The combinations of different feature descriptors are presented here for the first
time in the context of hand posture recognition.
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• HU – Implemented as in Otiniano-Rodríguez, Cámara-Chávez e Menotti (2012). An
unmodified OpenCV implementation of Hu moments is used, resulting in a vector of
7 features.

• FD – Implemented as in Ng e Ranganath (2002) and Zhang e Lu (2001). Fourier
descriptor using centroid distance function, extracted from a contour with 120 points.
The feature vector is composed of the first 56 items in the vector f , as defined in
Equation 2.11.

• FD2 – Implemented as in Ng e Ranganath (2002) and Zhang e Lu (2001). Absolute
value of a Fourier descriptor using complex coordinates, extracted from a contour
with 120 points. The feature vector is composed of 56 first items in the vector f , as
defined in Equation 2.10.

• CM – 10 complex moments, implemented as in (HASAN; ABDUL-KAREEM, 2014)
and Badi, Hussein e Kareem (2014).

• PZM – Implemented as in Chong, Raveendran e Mukundan (2003). Absolute value
of complex pseudo-Zernike moments up to order 10, ignoring the first two moments,
resulting in a vector of 64 features.

• ZM – Implemented as in Otiniano-Rodríguez, Cámara-Chávez e Menotti (2012).
Zernike moments up to order 10, ignoring the first two moments, resulting in a vector
of 34 features.

• ZM_25 – Zernike moments up to order 25, ignoring the first two moments. Imple-
mented as in Guo, Liu e Gong (2015).

• GBσ=0.02 and GBσ=0.2 – 64 features based on a Gabor filter with the following
parameters: w = 64, θ = 0, λ = 1, γ = 0.02, ψ = 0. Two different values of standard
deviation σ are used: 0.02 and 0.2.

• GB2 – Concatenation of GBσ=0.02 (64 features) and GBσ=0.2 (64 features), resulting
in a vector with 128 features.

• GB2_HU – Concatenation of GB2 (128 features) and HU (7 features), resulting in
a vector with 135 features.

• GB2_HU_FD – Concatenation of GB2 (128 features), HU (7 features) and FD,
resulting in a vector with 191 features.

• GB2_ZM – Concatenation of GB2 (128 features) and ZM (34 features), resulting
in a vector with 162 features.

• GB2_HU_ZM – Concatenation of GB2 (128 features), HU (7 features) and ZM
(34 features), resulting in a vector with 169 features.
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• GB2_HU_ZM PCA_95% – A common feature reduction technique called
Principal Components Analysis (PCA) is applied to GB2_HU_ZM feature vector.
In order to avoid bias, the PC attributes are obtained from the Testing dataset,
retaining enough to account for 95% of the variance. The resulting vector contains
48 features.

• GB2_HU_ZM PCA_100% – This is just a linear combination of GB2_HU_ZM
feature vector, aimed to increase variance and with the same number of features
(169).
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5 Results and Analysis

The experiments are carried in the following sequence: evaluation of feature des-
criptors and optimization. They are described in the following subsections.

5.1 Evaluation of feature descriptors
In order do assess the discrimination capability of the feature vectors described

above, we test each with an MLP classifier. Hidden layers with 50, 100, 200, 300, 400 and
500 neurons are considered for each experiment. The results are analyzed with respect to
recognition accuracy and computational cost.

Table 1 shows the classification accuracies and CPU time for different descriptors.
The hidden layer size indicates the best network configuration for a given descriptor. The
CPU time during feature extraction is averaged across 700 images.

Succeeding, the accuracies are evaluated as described in Section 2.5: 20% random
holdout, repeated 50 times for each hidden layer size (50, 100, 200, 300, 400 and 500). The
averaged results are presented with standard deviation (σ).

As can be seen from Table 1, Gabor features achieve better recognition rates than
Zernike features. Although the feature vector based on Gabor filter has higher dimension,
its computational cost is only a fraction of Zernike or pseudo-Zernike moments. The

Table 1 – Comparison of performance for different feature descriptors.

Feature vector # of features Hidden
layer

CPU time
(ms) Accuracy (%)

HU 7 300 0.70 37.02 (σ = 5.26)
FD2 56 50 0.90 40.39 (σ = 1.45)
CM 10 300 2.10 48.09 (σ = 3.43)
FD 56 300 0.9 58.69 (σ = 3.05)

PZM 64 500 109.95 87.77 (σ = 2.96)
ZM 34 400 36.30 91.08 (σ = 1.95)

ZM_HU 41 500 37.30 91.41 (σ = 1.79)
ZM_25 180 400 252.00 92.08 (σ = 1.37)
GBσ=0.2 64 400 1.88 95.38 (σ = 1.27)

GB2_HU_ZM PCA_95% 48 300 43.34 95.86 (σ = 1.20)
GB2_HU_FD 191 200 3.81 95.88 (σ = 1.00)

GB2_HU 135 400 2.82 97.09 (σ = 0.80)
GB2 128 300 2.37 97.15 (σ = 0.84)

GBσ=0.02 64 400 1.88 97.16 (σ = 0.96)
GB2_HU_ZM PCA_100% 169 400 43.34 97.54 (σ = 0.66)

GB2_HU_ZM 169 400 43.34 97.56 (σ = 0.79)
GB2_ZM 162 400 39.01 97.63 (σ = 0.76)
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accuracies of the Fourier descriptor, Hu moments and complex moments are not as good
as those of other descriptors for this database. It is worth mentioning that the Fourier
descriptor based on centroid distance (FD) provides better results than the one based on
complex coordinates (FD2), as reported by Zhang e Lu (2001). It should also be noted
that an increased number of features does not necessarily yield better recognition rate, due
to a phenomena known as the curse of dimensionality (PRIDDY; KELLER, 2005). For
example, recognition rate associated with the GB2_HU_FD descriptor is lower than of
the GB2 descriptor alone.

Principal Components Analysis, retaining 95% of variance, proves effective in
reducing the dimensionality of the feature vector. However, this technique, known as a
filter approach to feature selection, does not necessarily improve recognition accuracy.
Since the reduced vector is just a linear combination of the original, CPU time is not
affected either. A wrapper approach to feature selection, such as the one presented in this
work, is usually better than filters in optimizing recognition rate (KOHAVI; JOHN, 1997).

Table 2 shows the result of the t-test between feature descriptors, compared with
GB2_HU. A confidence interval of 95% is used in the test and “+” (or “–”) indicates
that the accuracy achieved by a descriptor is statistically better (or worse) than that of
the GB2_HU descriptor. Furthermore, “=” means that there is no significant difference.
The data has been tested for normality by Shapiro-Wilk test with a 5% significance level.

A combination of Gabor and Zernike features provides statistically better accuracy
than either one of the descriptors by itself. On the other hand, Zernike moments have a
much higher computational cost. The feature vector GB2_HU provides fast computation,
good recognition rate and a large, possibly redundant, number of features, thus being
selected for further optimization.

Considering the GB2_HU feature vector, an experiment is performed to verify
the influence of the number of neurons in the hidden layer on the recognition rate. In this
experiment only the hidden layer is varied from 10 to 500 neurons. Figure 14 illustrates the
relation between the number of neurons in a hidden layer and recognition rate accuracy.
Despite an approximately linear growth in training time, the trained network does not take
more than 1 ms to classify a single vector. Also note that recognition rate is sensible to
slight adjustments in hidden layer size, which is also encoded in the NSGA-II chromosome.
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Table 2 – t-test between feature descriptors

Feature vector t-test on GB2_HU
HU –
FD2 –
CM –
FD –

PZM –
ZM –

ZM_HU –
ZM_25 –
GBσ=0.2 –

GB2_HU_ZM PCA_95% –
GB2_HU_FD –

GB2_HU =
GB2 =

GBσ=0.02 =
GB2_HU_ZM PCA_100% +

GB2_HU_ZM +
GB2_ZM +

Figure 14 – Recognition rate and training time as a function of hidden layer size. The
recognition time for a single feature vector varies insignificantly and is below
1 ms for any tested number of neurons in the hidden layer.

5.2 Optimization
Feature selection and neural network tuning are applied on the best feature vector,

considering recognition accuracy and computational cost.

The data from Table 1 is obtained by averaging a single solution over fifty runs. On
the other hand, the adapted NSGA-II algorithm described in Section 2.5 returns a set of
nondominated solutions, with corresponding testing and training accuracies after each run.
In order to compare these results, the fifty sets of solutions returned by the multi-objective
algorithm are first combined in a single union set. In the union set, results with the same



Chapter 5. Results and Analysis 39

number of features are combined into one by averaging the accuracy. Therefore, a set of
average solutions is obtained from all the fifty runs. This set is called the average Pareto
front. Besides the average Pareto front, the nondominated solutions in the union set are
also presented.

Figure 15 compares the output of NSGA-II with the average results of the original
feature vector (GB2_HU) and the most accurate feature vector (GB2_ZM). It contains
the nondominated solutions (GB2_HU – A) and the average Pareto front (GB2_HU – B)
returned by the evolutionary algorithm.

Figure 15 – Comparison of the NSGA-II output with full feature vectors.

Comparing the output from NSGA-II with GB2_HU and GB2_ZM, it can be seen
that the accuracy of the average Pareto front (GB2_HU – B) is similar to the results
contained in Table 1, but the number of features in GB2_HU – B is smaller. Also, the
nondominated set includes solutions with less features and higher accuracy. The results
suggest that a multi-objective technique can effectively explore the Pareto front of this
problem and obtain solutions with a reduced number of features and better classification
performance than those presented in Table 1.

5.3 Comparison with Existing Methods
A benchmark database (BARCZAK et al., 2011) is used to evaluate several feature

descriptors with respect to accuracy and computational cost. A detailed comparison is pre-
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Table 3 – Comparison with existing methods

Feature
descriptor Work # of

features
Accuracy

(%)
CPU time

(ms) Strengths Weaknesses

HU Otiniano-Rodríguez
et al. (2012) 7 37.02 0.70

Very fast
and easy to
implement

Low
accuracy

CM
Badi et al. (2014),
Hasan and Abdul-
Kareem (2014)

10 48.09 2.10 Fast Low
accuracy

ZM Otiniano-Rodríguez
et al. (2012) 34 91.08 36.30 Good

accuracy
High CPU

time

ZM_25 Guo et al. (2015) 180 92.08 252.00 Good
accuracy

Very high
CPU time

GB2_HU This paper 135 97.09 2.82
Low CPU
time; high
accuracy

More adjust-
able param-

eters

GB2_ZM This paper 162 97.63 39.01 High
accuracy

More adjust-
able param-
eters; high
CPU time

sented in Table 3, including main strengths and weaknesses found though experimentation.
The feature vectors proposed in this work outperform recent static gesture recognition
techniques based on Zernike and complex moments. Gabor features are used to extract
texture information from the image and have been shown to be a good combination to
Zernike moments for hand posture recognition. The main weakness of Gabor features is
that the Gabor filter has parameters that have to be adjusted for the specific application.
While combination of Zernike and Gabor features results in good recognition rate, multi-
objective analysis in section 5.2 suggests that a combination of Gabor and Hu descriptors
can achieve better performance in terms of both speed and accuracy.

5.4 Real-Time Gesture Recognition
In order to apply the results obtained by multi-objective analysis to a real-time

gesture recognition system, a single nondominated solution from the union is chosen. This
solution has the following parameters:

• accuracy on the Test subset: 98.61%.

• number of features: 68 (from 135), including the first, fourth, sixth and seventh Hu
moments.

• number of neurons in the hidden layer: 550.

The real-time system is implemented in C++, as described in Section 2.6 using the
OpenCV library. It runs on a notebook with an i5 processor. As previously stated, hand
segmentation is a difficult problem and is usually treated separately. In order to simplify
this step, the hand is filmed against a black background, wearing a black wristband.
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Figure 16 – Several gestures recognized in real time.

Figure 17 – An illustration of sensitivity to rotation. The gesture “Y” is only recognized
correctly in the middle image.

As illustrated in Figure 7b, the delay is measured from steps 5 to 10, because step
4 is hardware dependent. On average, once the frame is acquired, preprocessing (steps
5 to 8) takes 28ms, feature extraction (step 9) takes 2ms and the neural network (step
10) takes less than 1ms to recognize the feature vector. This means that, when using a
common 30fps camera, a single frame can be processed and recognized before the next
frame is acquired, resulting in no noticeable delay for the user. Note that no special effort
is made to optimize the image processing steps, as this is not in the scope of this paper.
Additionally, since the recognition step takes less than 1ms, a more advanced classifier,
such as an ensemble of classifiers, can be used.
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While most of the time gestures are correctly recognized, as illustrated in Figure
16, some are very sensible to rotation. For example, the letter “Y” is recognized only
when the thumb and the little finger are horizontally aligned, as can be seen in Figure
17. The recognition accuracy is also greatly affected by quality of hand segmentation. For
example, a gesture is not correctly recognized if the hand is segmented with the wrist.
This suggests that a larger and more robust database would be needed. It is important to
notice that while the Massey database is good for benchmarking, it is not ideal for a real
world application.
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6 Conclusion

A hand posture recognition system is proposed, based on Gabor and Hu feature
descriptors. It has a main advantage of high speed and is shown to outperform other
state-of-the-art methods. The following are the main contributions of this work:

• Several commonly used feature extraction methods are tested on a benchmark dataset
and compared by accuracy and computational cost for the first time.

• A multi-objective optimization scheme is presented and applied to a real-time hand
posture recognition system with promising results. It is shown that both neural
network size and feature vector are important for a good recognition rate.

• A real-time gesture recognition system is implemented based on the optimized
configuration returned by feature selection.

Recognition accuracy of up to 98.61% is achieved for 36 gestures, while using a
feature vector with low computational cost (extraction time of 2.82 ms for a 64×64 image).
The proposed method outperforms other recent methods in terms of accuracy and speed.
This feature vector is used to make a fast gesture recognition system.

6.1 Future work
Future work may be developed in several directions. Firstly, it is possible to add

more descriptors to the feature vector and more degrees of freedom to the configuration
of the neural network. The adjustment of Gabor parameters can also be included in the
optimization algorithm. Other candidates for feature descriptors include Histogram of
Oriented Gradients (HOG), Local Binary Patterns (LBP), Speeded up robust features
(SURF) and cascade detectors.

Due to its speed, the proposed system for static hand gestures can be extended to
recognize dynamic gestures. This can be done by adding dynamic information, such as
position, orientation and velocity to the classified posture. A sequence of postures can be
recognized as a dynamic gesture by a probabilistic method, such as Hidden Markov Model
(HMM).

While NSGA-II is widely applied to multi-objective problems, other optimization
algorithms have been recently proposed and could be compared to NSGA-II in the context
of hand posture recognition. Unified evolutionary optimization procedure (SEADA; DEB,
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2015) and improved multi-directional local search (LIAN; MILBURN; RARDIN, 2016)
are suggested for this comparison.

The classification system described in this work is not specific to hand gestures.
Thus, different datasets could also be evaluated and the proposed method can be applied
to detection of other objects.

Finally, different classifiers are going to be evaluated for gesture recognition. Con-
volutional Neural Networks (CNNs) have achieved state-of-the-art results in several
applications, including hand posture/gesture recognition. They have the advantage of
dispensing the traditional feature extraction step, as the classifier and the convolutional
feature extractor are trained simultaneously. One of the drawbacks of CNNs is the amount
of memory required to store the parameters and its real-time performance. For example, a
classical network for image recognition, Alex-net (KRIZHEVSKY; SUTSKEVER; HIN-
TON, 2012), requires about 250 MB of RAM and 1.5 million floating-point operations.
Training also usually takes much longer than other machine learning methods, but this can
be mitigated by parallel processing in a GPU. The performance of this network is going to
be compared with traditional methods in terms of recognition accuracy and speed.
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